
javascr ipt

7 - 1

“...myself and a few others saw that
there was a need for a language that was
approachable, that you could put directly
in the web page”Brendan Eich, original creator of JavaScript

The Newstack Podcast, 2018

https://thenewstack.io/brendan-eich-on-creating-javascript-in-10-days-and-what-hed-do-differently-today/

1.	 Declare an empty array to store payments.

We have used the keyword const to declare it, but that doesn’t mean it will always be
empty! It just means its overall container type cannot change into, say, a string, and
we can’t re-use the same variable name again further on down the code.

2.	 Define a function to create payment objects and add them to the payments
array. Note the use of default parameters, so we don’t end up with undefineds in the
case of an invalid entry. Note it is almost a pure function, save for the reference to
the payments array. We could pass in a payments array and it would be fully pure.

This app creates a list of all recurring payments out of your bank account
per month. It stores the date, amount, and payment recipient name.

Like Excel, but funner, and easily customisable.

The user inputs day of the month, and the total required from that day on till
the end of the month is calculated and displayed.

Frontend cookbook7 - 2

Daily Bread Payments Calculator

? G Glossary
of terms

Repository - Full Code - https://github/lavenderlens/ <Public When
PublisheD AT> frontend-cookbook/samples/payments-calculator/

https://github.com/lavenderlens/
https://github.com/lavenderlens/

JavaScr ipt

3.	 Define a function to calculate payments remaining. It accepts a day of the
month, and a payments array. Why accept a payments array when we only have one?
This future-proofs the code if we later decide to transform the original array.

4.	 Now that we have the functions to create payment objects, and calculate
remaining payments, we can tie this up to DOM input from the user. This code
identifies three areas in our HTML -

#date (the date selector)
#filter (the toggle pessimistic mode checkbox), and
#result (the displayed result).

•
•
•

Frontend cookbook 7 - 3

Frontend cookbook7 - 4

Daily Bread Payments Calculator

5. 	 The resultant DOM looks like this, with a
little help from either the Materialize CDN, linked
to either in the head of our page, or the Material-
ize distribution, linked to locally:

6.	 Testing the two functions in developer
tools looks like this, drilling down into the ele-
ment to get the value, and applying a little
type coercion to get a number that we can do
Maths to if we choose. In the console,

Blue is type number
Orange is type string
Black is output only.

7.	 This code identifies our 3 areas in the DOM, and either gets data from
them or returns it to display. We could add a button at this stage, and listen for click
events, but I have added change listeners to both the date selector and an optional

•
•
•

Frontend cookbook

JavaScr ipt

7 - 5

checkbox toggle which takes 3 days off the date entered, so they BOTH trigger the
callback getAndDisplayTotal. It’s much more lively and saves clicks. This is all the
DOM-related code, together. It’s worth noting that:

You need to either place this at the end of your HTML elements that it refer-
ences, basically, a last child of your <body>, just before the closing body tag
</body>, OR
Do something more clever with it to delay it running before the DOM is built.

8.	 Populate payments by calling createPayment repeatedly with different data.
Start off by hardcoding your own expenses. Refactor later to accept ALL payments
from ANY user.

9.	 OK, so now we have the basic app working and looking reasonably neat, we
can add extra functionality. Suppose we decided it would be nice to show the expens-
es while taking into account payment holidays on one or more credit or store cards.

•

•

10.	 Functional Programming, or FP, design patterns encourage leaving the
original data, in this case our array of payment objects, unchanged, or “immuta-
ble”.

11.	 FP transformations of the data return a COPY of the original which may be
assigned its own unique pointer, and so leaving the original unchanged.

12.	 We can use the “recipient” field of each payment object to search for its cor-
responding entry in the payments array.

13.	 We can then use Array.prototype.filter(), repeatedly, to filter out payment
object from the collection, one-by-one. In code, it would look something like this:

What’s fully going on here? The filter function TAKES a function as an argu-
ment. It’s a tiny algorithm usually written inline as an arrow function but doesn’t
have to be, which tells filter the criterion to filter on. In this case it’s allow any pay-
ment that doesn’t (!) contain the name passed in as part of its recipients property.

14.	 Let’s test the logic of our filter algorithm in the console: [over]

7 - 6

Daily Bread Payments Calculator

Frontend cookbook

JavaScr ipt

Challenges

15.	 Modify the UI to take payment holiday data
from the user and modify the function to accept a
search term.

16.	 If you want to keep the loading view of the
app nice and clean, you can make the filter function
optional, say, by using another checkbox toggle.

17.	 This checkbox, when checked, would render
a new text input and search button which would
call the filter function. Output the result in the same
place - don’t confuse the user by changing the UI
too much! Hint: use document.createEle-
ment() to create the new elements, document.
appendChild() to place them in the DOM.

18.	 At the moment, the app will only remember
transformations on the payments array as long as the
browser tab is kept open. If we want to persist state
between uses of the app we can leverage the HTML5
localStorage API. This is like a halfway house to
connecting with a database on the server.

Notes
Can you think of other
questions you would like to
be able to ask your data?

7 - 7Frontend cookbook

33

30

